شهادة البكالوريا

السنة الدر اسية 2014/2015

(مدة الإنجاز 3 ساعات)

وشعبة العلوم و التكنولوجيات بمسالكها

يسمح باستعمال الآلة الحاسبة الغير القابلة للبرمجة)

التمرين 1: $Z^2 - 2Z + 5 = 0$: المعادلة (1) حل في المجموعة (1) B(-1,-1,0) A(1,0,1) النقط ($0,\overrightarrow{l},\overrightarrow{l},\overrightarrow{k}$) م.م.م م.م.م

- 2) نعتبر في المستوى العقدي (p) المنسوب الى معلم م.م
- مباشر مباشر $(o, \overrightarrow{u}, \overrightarrow{v})$ النقط A و B و C و D التي ألحاقها على التوالي
- d = -5 + 8i و c = 3 و b = 1 2i و a = 1 + 2i
 - أ) تحقق أن النقط A و B و C غير مستقيمية
- ABC ثم بين أن المثلث $(\overrightarrow{CA}, \overrightarrow{CB})$ ثم بين أن المثلث $(\overrightarrow{CA}, \overrightarrow{CB})$ قائم الزاوية ومتساوي الساقين
- M'(Z') لتكن M'(Z') صورة M'(Z') بالتحاكي M'(Z') نسبته k = -3
 - H نين أن Z' = -3Z + 4 + 8i تمثيل عقدي للتحاكى
 - ب) بين أن النقطة D هي صورة C بالتحاكي H

التمرين 2: ن|3

- $(\forall n \in \mathbb{N})$ بين ان 3 (1
- 2) بين أن المتتالية (Un) تناقصية ثم استنتج انها متقاربة
 - $(\forall n \in \mathbb{N})$ $V_n = \frac{1}{\bigcup_{n} 3}$ نضع (3)
 - أ_ بين ان (V_n) متتالية حسابية اساسها $\frac{1}{2}$
- (U_n) ج- حدد نهاية المتتالية
- $S_n = (V_0 + V_1 + V_2 + V_3 + \dots + V_n)$ from the same of (4)

التمرين 3:

- يحتوي صندوق على ثلاث كرات خضراء وكرة واحدة حمراء وكرتين
 - نسحب عشوائيا بالتتابع وبدون احلال ثلاث كرات من الصندوق نعتبر الأحداث التالية
 - A) سحب كرتين بالضبط من نفس اللون
 - B) سحب ثلاث كراث مختلفة اللون مثنى مثنى
- 2) ليكن X المتغير العشوائي الذي يربط كل سحبة بعدد الكرات البيضاء المسحوبة في الصندوق
 - بين أن القيم التي يأخذها المتغير العشوائي X هي 0 1 2
- (+) حدد قانون الاحتمال (+) ثم أحسب الأمل الرياضي والانحراف الأطرازي

 $x^2 + y^2 + z^2 + 2z - 1 = 0$ والفلكة (S) والفلكة (C(1,1, 2)

مادة: الرياضيات

شعبة العلوم التجريبية بمسالكها

- اً بين أن \overrightarrow{A} مستقيمية \overrightarrow{AB} م $\overrightarrow{AC} = 2\overrightarrow{J} 2$ فير مستقيمية المنافع أن أن \overrightarrow{AB} م المنافع مستقيمية المنافع أن أن
 - (ABC) هي معادلة ديكارتية للمستوى y-z+1=0 ب. بين أن
 - $R=\sqrt{2}$ بين أن مركز الفلكة (S) هي النقطة (Ω (0,0, -1) وشعاعها هو (2
 - (ABC) عن المستوى Ω
 - ب استنتج أن المستوى (ABC) مماس للفلكة (S)
 - (ABC) أ- حدد تمثيلا بارا متريا للمستقيم (D) المار من Ω والعمودي على
 - ب- حدد متلوث احداثيات H نقطة التماس المستوى (ABC) و الفلكة (S)

 $g(x) = (1-2x)e^{2x}-1$: لتكن و دالة العددية المعرفة على $\mathbb R$ بما يلي و دالة العددية المعرفة

- $\lim_{x\to +\infty} g(x)$; $\lim_{x\to -\infty} g(x)$: احسب النهايتين (1
 - $(\forall x \in \mathbb{R})$ g'(x) = $-4xe^{2x}$ بين أن (2
 - 3) بين أعط جدول التغيرات الدالة g
 - $(\forall x \in \mathbb{R})$ $g(x) \leq 0$ استنتج ان (4

الجزء الثاني:

نعتبر الدالة العددية f المعرفة بما يلى $f(x) = (x-1)e^{2x} + x$ وليكن منحناها $\|\vec{i}\| = 2$ cm حيت (o, \vec{i}, \vec{j}) في معلم متعامد ممنظم

- $\lim_{x \to -\infty} f(x) = -\infty$ يين أن $\lim_{x \to +\infty} f(x) = +\infty$ و $\lim_{x \to +\infty} f(x) = +\infty$
 - y = x ليكن المستقيم (D) الذي معادلته (2
 - $-\infty$ ابين أن المستقيم (D) مقارب مائل للمنحنى أن المستقيم (D) بجوار
- $+\infty$) بين أن المنحنى (C_f) يقبل فرع شلجمي في اتجاه محور الأراتيب بجوار
 - (D) y = x والمستقيم (Cf) والمستقيم ج) أدر الوضع النسبي المنحنى
 - $(\forall x \in \mathbb{R})$ f'(x) = -g(x) أ بين ان (3
 - ب) استنتج جدول التغيرات الدالة f
 - 4) أدرس تقعر المنحنى (Cf) وحدد نقطة انعطاف
 - 0 مماس المنحنى (C_f) عند النقطة ذات الأفصول (T) عدد معادلة
 - $\frac{1}{2} < \alpha < 1$ وأن α وأن α وأن α وأن α بين أن المعادلة وميدا α تقبل حلا وحيدا α
 - (D) والمستقيم (Cf) أنشئ المنحنى ($^{(7)}$

 - $\int_{-1}^{0} (x-1)e^{2x} dx = \frac{5-3e^2}{4e^2}$ باستعمال مكاملة بالأجزاء بين أن (6
 - 8) ليكن (Δ) حيز المستوى المحصور بين (Cf) والمماس (T) و المستقيمين
 - x=-1 و x=0 المعرفين بالمعادلتين
 - أ- لون الحيز (Δ)
 - (Δ) ب- أحسب مساحة الحيز