تمارين التحولات السريعة و التحولات البطيئة

ما بنبغی اگنسابه من معارف و مهارات

- ا كتابة معادلة التفاعل المنمذج لتحول الأكسدة و الاختزال و التعرف على المزدوجتين المتدخلتين.
 - تعریف مؤکسـد و مختزل.
 - ا إبراز تأثير العوامل الحركية على سرعة التفاعل انطلاقا من نتائج تجريبية.

نصوص التمارين

تمرین 1 کتابة نصف معادلة أکسدة و اختزال

أكتب نصف معادلة الأكسدة و الاختزال المتعلقة بكل من المزدوجات التالية:

Cu²⁺ / Cu

 H^+/H_2

 I_2/I^-

(في وسط حمضي) MnO_4^-/Mn^{2+}

(في وسط حمضي) H_2O_2/H_2O

(في وسط حمضي) O_2/H_2O_2

تمرین 2

معادلة تفاعل أكسدة و اختزال

يتفاعل محلول مائي لبرمنغنات البوتاسيوم في وسط حمضي مع محلول مائي لحمض الأكساليك. المزدوجتان مؤكسـد- مختزل المتدخلتان هما:

(عديم اللون) ${\rm CO_2} \, / \, {\rm H_2C_2O_4}$ (عديم اللون) و (عديم اللون) ${\rm MnO_4}^- \, / \, {\rm Mn}^{2+}$

1- أكتب المعادلة الحصيلة للتفاعل.

2- يعتبر هذا التفاعل بطيئا، كيف يمكن إبراز ذلك تجريبيا؟

تمرین **3** تف

تفاعل سريع و آخر بطيء

نعتبر المزدوجات التالية:

(أيون الكبريتات) $S_2O_8^{2-}/SO_4^{2-}$ (أيون بروكسو ثنائي كبريتات)

(أيون ثيوكبريتات) $S_4O_6^{2-}/S_2O_3^{2-}$ (أيون رباعي ثيونات)

(أيون اليودور) I_2 / I^- (ثنائي اليود)

- **1-** نصب محلولا مائيا لثنائي اليود (لون بني) في محلول مائي لثيوكبريتات الصوديوم(عديم اللون). أكتب معادلة التفاعل و علل اختفاء اللون الملاحظ.
- 2- نصب محلولا مائيا لبروكسو ثنائي كبريتات البوتاسيوم (عديم اللون) في محلول مائي ليودور البوتاسيوم (عديم اللون). أكتب معادلة التفاعل. ماذا يلاحظ؟

<u>العلوم الفيزيائية</u> www.atouzzane.e-monsite.com لأيون الثيوكبريتات $S_2O_3^{2-}$ خاصيات مؤكسد و مختزل في آن واحد، فهو يتفاعل في وسط حمضي حسب تفاعل أكسدة و $S_2O_3^{2-}$. $SO_{2(aq)} / S_2O_{3(aq)}^{2-} / S_{(aq)} / S_{(s)}$ و $S_2O_{3(aq)}^{2-} / S_{(aq)} / S_{(s)}$.

- **1-** أكتب معادلة التفاعل.
- **-2** ننجز هذا التفاعل في ثلاثة كؤوس مختلفة مع تغيير شروط التجربة من كأس لآخر. هذه الشروط مدونة في الجدول التالى:

الكأس 3	الكأس 2	الكأس 1	الشروط التجريبية
20	20	20	درجة حرارة الخلائط (°C)
20	20	20	حجم محلول ثيوكبريتات الصوديوم(mL)
40	20	10	حجم محلول حمض الكلوريدريك(mL)
0	20	30	حجم الماء (mL)
61	72	85	مدة التحول (s)

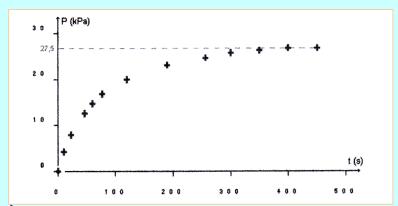
ما العامل الحركي الذي تبرزه هذه التجربة؟ علل جوابك.

تمرین 5

أكسدة أيونات اليودور بواسطة الماء الأكسجيني

يتفاعل الماء الأكسجيني(بروكسيد الهيدروجين) في وسط حمضي مع أيونات اليودور حسب تفاعل بطيء و تام معادلته: $H_2O_{2(aq)} + 2I^-_{(aq)} + 2H^+_{(aq)} \rightarrow I_{2(aq)} + 2H_2O_{(l)}$

- **1-** تعرف على المزدوجتين مؤكسد-مختزل المتفاعلتين و اكتب نصف معادلة كل منهما.
- في اللحظة $\dot{t}=0$ يمزّج 20,0 \dot{m} من محلول يودور البوتاسيوم تركيزه $\dot{t}=0$ محمض بواسطة فائض من حمض الكبريتيك و $\dot{t}=0$ من الماء الأكسجيني تركيزه $\dot{t}=0$ mol.L-1 من الماء الأكسجيني تركيزه $\dot{t}=0$ mol.L-1
 - أ- أحسب كميات المادة البدئية.
 - ب- أنِجز الجدول الوصفي لتطور المجموعة (جدول التقدم للتحول).
 - ت- أثبت العلاقة بين التركيز المولي لليود الناتج و التقدم x للتفاعل.
 - ث- حدد التقدم الأقصى للتفاعل و استنتج التركيز النهائي لليود.


تمرین 6

تفاعل حمض الإيثانويك و هيدر وجينو كربونات

في حوجلة حجمها V = 1,41 L يصب الحجم v = 60 mL من محلول مائي لحمض الإيثانويك تركيزه $c = 5,0 mol.L^{-1}$ و كتلة m = 1,25 g من هيدروجينو كربونات الصوديوم m = 1,25 g. تغلق الحوجلة و توصل بمقياس الضغط. يتفاعل الحمض مع هيدروجينو كربونات الصوديوم وفق المعادلة التالية:

$$CH_3 - CO_2H + HCO_3^- \rightarrow CH_3CO_2^- + CO_2 + H_2O_3^-$$

يعين ضغط الغاز الذي ينطلق خلال التحول بدلالة الزمن. النتائج ممثلة في المبيان التالي:

- علما أن القياسات أنجزت عند درجة الحرارة ℃ 25 حدد باستعمال المبيان ،كمية المادة لثنائي أكسيد الكربون الناتج عند نهاية التجربة.
 - 2- حدد كميات المادة البدئية للمتفاعلات.
 - **3-** أنشئ جدول التقدم للتفاعل و استنتج:
 - التقدم الأقصى،
 - المتفاعل الحدي،
 - كمية المّادة القصوى لثنائي أكسيد الكربون و قارنها مع النتيجة التجريبية . ماذا تستنتج؟
 - $M(NaHCO_3) = 84 \text{ g.mol}^{-1}$ و R = 8,31 (S.I)